The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework
نویسندگان
چکیده
MOTIVATION Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria and play a fundamental role in coordinating the homeostasis and behavior of biological systems. Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/translation feedback loops and involving only a dozen genes, play a central role in maintaining these oscillations. However, high-throughput gene expression experiments reveal that in a typical tissue, a much larger fraction ([Formula: see text]) of all transcripts oscillate with the day-night cycle and the oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all transcripts, and perhaps also other molecular species, may bear the potential for circadian oscillations. RESULTS To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10 circadian metabolomic studies conducted in mice using different tissues and under different conditions. We find that over half of protein coding genes in the cell can produce transcripts that are circadian in at least one set of conditions and similarly for measured metabolites. Genetic or environmental perturbations can disrupt existing oscillations by changing their amplitudes and phases, suppressing them or giving rise to novel circadian oscillations. The oscillating species and their oscillations provide a characteristic signature of the physiological state of the corresponding cell/tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution over two trillion day-night cycles to have intrinsic circadian frequency. These oscillating loops are coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes form a major hub. Cells can program and re-program their circadian repertoire through epigenetic and other mechanisms. AVAILABILITY AND IMPLEMENTATION High-resolution and tissue/condition specific circadian data and networks available at http://circadiomics.igb.uci.edu. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Phase response curves elucidating the dynamics of coupled oscillators.
Phase response curves (PRCs) are widely used in circadian clocks, neuroscience, and heart physiology. They quantify the response of an oscillator to pulse-like perturbations. Phase response curves provide valuable information on the properties of oscillators and their synchronization. This chapter discusses biological self-sustained oscillators (circadian clock, physiological rhythms, etc.) in ...
متن کاملGlia-related circadian plasticity in the visual system of Diptera
The circadian changes in morphology of the first visual neuropil or lamina of Diptera represent an example of the neuronal plasticity controlled by the circadian clock (circadian plasticity). It is observed in terminals of the compound eye photoreceptor cells, the peripheral oscillators expressing the clock genes. However, it has been found also in their postsynaptic partners, the L1 and L2 mon...
متن کاملA design principle for a posttranslational biochemical oscillator.
Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase) can show oscillations in its modification state. An unbiased computational analysis of thi...
متن کاملSpontaneous synchronization of coupled circadian oscillators.
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotran...
متن کاملElectrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods.
Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 19 شماره
صفحات -
تاریخ انتشار 2015